Selectors:
Actors with Multiple

Guarded Mailboxes

AGERE! 2014
Monday, October 20, 2014

Shams Imam, Vivek Sarkar
shams@yrice.edu, vsarkar@rice.edu

Rice University

N RICE

Introduction

Multicore processors are now ubiquitous

Parallelism is the future of computing

Actor Model regained popularity
* Erlang — flagship language

Actors give stronger guarantees about concurrent code
e Data race freedom

* Location transparency

N RICE

% _ _ N RICE
Motivation

 Actor Model (AM) is not a silver bullet
* Synchronization and coordination harder
e Compared to shared-memory model

* Coordination patterns involving multiple actors are
particularly difficult

* Until message is processed solutions may require the actor to
* Buffer messages

* Resend messages to itself

% N RICE
Goals

* Simplify writing of synchronization and coordination patterns
* Using an extension to Actors
e Patterns of interest
* synchronous request-reply
* join patterns common in streaming applications
* priorities in message processing
* variants of reader-writer concurrency
e producer-consumer with bounded buffer

* Future Work: Other patterns

Outline

Introduce Selector extension

Join patterns in streaming applications
Synchronous request-reply pattern
Reader Writer Concurrency
Performance Evaluation

Summary and Future Work

N RICE

Actor Model

First defined in 1973 by Carl Hewitt
A message-based concurrency model
An Actor encapsulates mutable state
Processes one message at a time

Actors coordinate using asynchronous messaging

b Actor Diagrammatic Representation

process
one message
at a time

local state

Coe Y RICE
Actor / Selector Similarities ’

A message-based concurrency model

A Selector encapsulates mutable state

Processes one message at a time

Selectors coordinate using asynchronous messaging
Benefits of modularity from the AM are preserved

Data locality properties of the AM continue to hold

Actor / Selector Lifecycle

O— NEW — STARTED | — TERMINATED —>©

* NEW: actor instance has been created
 STARTED: actor can receive and process messages sent to it

e TERMINATED: actor will no longer process messages sent to it

_ Y RICE
b Actor / Selector Differences ’

 Multiple mailboxes

 Messages can be concurrently sent to different mailboxes
 Each mailbox maintains a mutable guard

* Mailbox can always receive messages

e Guard changed using enable/disable operations

» Affects which mailboxes provides next message to process

* Actoris a Selector with a single mailbox

* Guard on the mailbox always enabled

10

Guarc!ed Mailques Local State

[EE=E] =

»

|
<
‘ ‘ ‘ ‘ ’ L Message

Processing Logic

11

_ N RICE
Sending messages to a Selector

The send operation receives two arguments:

* Target mailbox name
* Actual message to send
Flexibility in determining the target mailbox
* By the sender entity
* By the recipient selector
* Hybrid policy using combination of both schemes

Message ordering preserved between same sender-receiver
pair in a given mailbox

12

HelloWorld Primer

1 object SelectorPrimer extends App {
2 val s = new EchoSelector ()

3 s.start ()

4 s.send(MBX_1, "Hello™)

5 s.send(MBX_2, "World")

6

}

class EchoSelector extends Selector {
9 var msgProc = 0

10 disable(MBX_2)

11 def process(message: AnyRef) {

o0

12 println(message)

13 msgProc += 1

14 if (msgProc == 1) { enable(MBX_2) }
15 else 1if (msgProc == 2) { exit() }
16 }

17 }

13

0 Join Patterns
in Streaming Applications

 Messages from two or more data streams are combined
together into a single message

* Joins need to match inputs from each source

* Wait until all corresponding inputs become available

1 0
| 1 1

—)l Source-1 I l

10 S

-9| Source-2 I >| Adder >

1 0 T
| ... 5 3
-9| Source-3 |

14

_ Y RICE
Actor-based Solution "

Actors lack guarantee of which message is processed next

Data structure to track in-flight items from various sources

Wait for items from all sources for the oldest (lowest) sequence
number to be available

Aggregator actor then reduces the items into a single value and
forwards it to the consumer

15

b Selector-based Solution

* One mailbox for each source
e Sources send their messages to corresponding mailboxes

 Two policies...

16

Arbitrary Order Policy

Disable mailbox of source as an item is processed
Disallow processing items not part of current sequence
Reset when items from all sources have been received

Non-determinism from ordering of messages processed

17

Round-Robin Order Policy

Initially disables all the mailboxes except the first mailbox
As each item is received the current mailbox is disabled
Mailbox of the next source in round-robin order is enabled

Determinism from message processing order

18

0 Synchronous
Request-Response Pattern

* Requester sends a message to a replier system
* Replier receives and processes the request
* Replier returns a message in response

* Requester can make further progress after receiving response

Request
Message

19

Image source: http://soi-toolkit.googlecode.com/svn/wiki/ConceptsAndDefinitions/EP-RequestResponse-Synchronous.png

_ A RICE
b Actor-based Solution ’

 Hard to implement efficiently
* Requestor actor's single mailbox must handle both
* Response message from replier
* Other messages sent to it from other actors
Solutions
e Pattern matching on the set of pending messages
* Increases time for searching next message to process
* Some notion of blocking explicitly and usually limits scalability

* Non-blocking solution stashes messages until reply message
found

20

_ Y RICE
b Selector-based Solution "

 Two mailboxes

* one to receive regular messages

e one to receives synchronous response messages
* Whenever expecting a synchronous response

e disables the regular mailbox ensuring next message
processed is from reply mailbox

21

_ PN RICE
b Reader-Writer Concurrency °

 Multiple entities accessing a resource, some reading and some
writing

* No entity may access the resource for reading or writing while
another process is in the act of writing to it

* The first readers-writers variant:

* No read request shall be kept waiting if the resource is currently opened
for reading

e The second readers-writers variant:

* No write request, once added to the message queue, shall be kept
waiting longer than absolutely necessary

e Actors do not support intra-actor concurrency!

22

b Previous Work: Actors + Task Parallellsm L

* Unify async-finish task parallelism and actors
» All parallel constructs are first class

* Benefits
* Enable intra-actor parallelism
e Simplify termination detection

* Implementation: Habanero-Scala Actors

Integrating Task Parallelism with Actors. Shams Imam, Vivek Sarkar.
Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA), October 2012.

23

_ b\ RICE
Selector-based Solution

Extend Habanero actors support for intra-actor parallelism
Spawn separate task for read requests
Maintain counter for in-flight read tasks
Write requests
* Wait for in-flight read tasks to complete
* Disallow other messages from being processed

* Enable mailboxes only after write request completes
processing

24

b Selector-based Solution

* Arrival-Order variant:

* Maintain single mailbox for READ and WRITE
* The first readers-writers variant:

* Maintain two mailboxes

 READ mailbox gets higher priority than WRITE mailbox
* The second readers-writers variant:

* Maintain two mailboxes

 WRITE mailbox gets higher priority than READ mailbox

PN RICE

25

Experimental Results

N RICE

12-core (two hex-cores) 2.8 GHz Intel Westmere SMP node
Java Hotspot JDK 1.8.0

Our implementation:

Habanero Selector (HS), pure library impl on Java 8

Other libraries:

Habanero Actors (HA) 0.1.2
Scala 2.11.0 actors (SC)
Akka 2.3.2 (AK)

Functional Java 4.1 (FJ)
Jetlang 0.2.12 (JL)

Scalaz 7.1.0-M6 (S2)

26

b Message Throughput (ForkJoin)

SC H 24.60
AK 5.05
FJ H 5.21
JL —— 8.92
SZ §2.63
HA K 4.44
HS1 K 4.67
HSS8 H 5.04
HS16 H 5.20
HS32 H 5.39
0 5 10 15 20 25

Average Execution Time (in seconds)
* 60 actors
* Each actor sent 400K messages

e Selector version: message sent round-robin to mailboxes

27

b Mailbox Contention (Chameneos)

SC H 62.96
AK H 15.46
FJ i 31.41
JL | 8.95
SZ §7.19
HA i 13.81
HS1 13.58
HS8 b 11.10
HS16 111.16
HS32 § 11.42
0 10 20 30 40 50 60 70

Average Execution Time (in seconds)
* 500 Chameneos actors

* 8 million meetings

28

b Filter Bank benchmark

SC — 73.30
AK — 59.40
FJ — 89.89
JL — 54.40
SZ H 48.55
HA — 64.66
HSRR 34.86
HSAO 33.75

0 10 20 30 40 50 60 70 80 90 100
Average Execution Time (in seconds)

T

-

* 8-way joins
e 300K data items

e 131,072 columns
29

b LogisticMap benchmark

AK — 10.25
FJ H 13.57
JL H 6.58
SZ H 7.96
HA —- 13.14
HS — 4.02

0 2 4 6 8 10 12 14

Average Execution Time (in seconds)

Xn+1 = FXxp(1—x,)

e 150 helper term actors, 150 ratio actors

e 150K terms computed

30

b Bank Transaction benchmark

AK — 27.85
FJ — 26.35
JL — 26.87
SZ — 34.43
HA — 21.78
HS — 10.81 |
0 5 10 15 20 25 30 35

Average Execution Time (in seconds)

e 100 bank accounts

10 million transactions

31

b Concurrent Dictionary benchmark

SC H 49.18
AK - 16.33 -
FJ 27.27
JL H 21.86
SZ k 11.26
HA — 20.28
HSWF 13.09
HSRF 13.41
HSAO 12.85

0 10 20 30 40 50
Average Execution Time (in seconds)

—

-

e 24 Workers, 400K messages per worker
* Write Percent of 10

e Each operation is O(1)

32

b Concurrent Sorted Linked-List benchma

SC
AK
FJ]

JL

SZ
HA
HSWF
HSRF
HSAO

— 7941
H 53.19
H 68.29
H 56.43
H 59.47
H 58.79
HO.11
H11.64
| H12.53 |
10 20 30 40 50 60 70 80

Average Execution Time (in seconds)

24 Workers, 15K messages per worker
* Write Percent of 10

e Each operation is O(N)

33

More in the Paper

Declarative Style Guards

Supporting Priorities in Message Processing
Producer Consumer with Bounded Buffer
Code Snippets for various solutions

Additional Performance Results

34

Related Work

Pattern matching on receive
* Enabled-sets by Tomlinson and Singh
e Scala Actors by Haller
Aggregator Pattern from Akka
* Does not match sender
Message priorities
* SALSA provides two-level priority
Parallel Actor Monitors
* Solves the symmetric reader-writer problems

* Does not support priorities, hence other variants

N RICE

35

Future Work and Availability ~ ©

Discover and support further synchronization and coordination
patterns

* Nondeterministic Finite Automata
* Multiple-message selection patterns

Experiment with message selection policies

Implementation available in Habanero-Java library
https://wiki.rice.edu/confluence/display/PARPROG/HJ+Library
Benchmarks available as part of Savina Benchmark Suite

* See talk later today ©

36

b Summary

* Simplify writing of synchronization and coordination patterns
* Using a simple extension to Actors
* Multiple guarded mailboxes
e Patterns of interest
* Join patterns common in streaming applications
e Synchronous request-reply
* Variants of reader-writer concurrency
* Priorities in message processing

* Producer-consumer with bounded buffer

37

N RICE

b Questions

1mport agere.audience.Questions
1mport agere.audience.Comments

38

2 RICE

b Backup-Slides

22?5 '

39

, b\ RICE
Declarative Guards

Move away from imperative style towards functional style
Register predicated guard expressions on mailboxes
Mailboxes enabled or disabled after processing each message

Separates message processing logic from logic to enable or
disable mailboxes

40

Y

I class ReqRespSelector extends Selector {
def process(theMsg: AnyRef) {
theMsg match {
case m: SomeMessage =>

Reqg/Resp Selector-based Solution

2
3
4
)
6
7
8
9

10
11
12
13
14
15

// a case where we want a response
val req = new SomeRequest(this, m)
anotherActor.send(req)

// move to reply-blocked state
disable (REGULAR)

case someReply: SomeReply =>

// process the reply (from REPLY mailbox)

// resume processing regular messages
enable (REGULAR)

Pyl

41

y

Reqg/Resp Selector-based Solution

16 class ResponseActor extends Actor {
17 def process(theMsg: AnyRef) {

18 theMsg match {

19 case m: SomeRequest =>

20 val reply = compute(m.data)
21 // send to response mailbox
22 sender () .send (REPLY, reply)

23

24 } o} o}

42

b Supporting Priorities 2 RICE
In Message Processing

 Messages with a higher priority processed before those with
lower priority

e Even if they were sent earlier
* Useful for recursive data structure traversal algorithms

 Deeper nodes are more probable to produce results

43

Actor-based Solution

Normally actors do not support priorities while processing
messages

Use a priority queue to store messages in the mailbox

Adds overhead to the concurrent mailbox

44

_ Y RICE
Selector-based Solution "

Support priorities for message processing non-intrusively
without changing the message processing body

Selectors have multiple mailboxes, each mailbox is used to store
messages of a given priority

Messages be categorized by priority

45

3 \;\ RI C E

b NQueens benchmark

|
40.54 |

36.49 N
31.09 B

32.01 B
33.98 B

35 40 45

46

) A* Search benchmark SR

|

34.71 B
33.86 N
33.97 B

3596 |
34.68 N

40

47

) Producer-Consumer 23 RICE
with Bounded Buffer

* Classic example of a multi-process synchronization problem
* Producers push work into the buffer

* Consumers pull work from the buffer

Actor-based solution

* Buffer actor needs to keep track of
 Whether the data buffer is full or empty
* Store consumers when buffer empty buffer
e Stall producers when buffer full

* Notify producers when space becomes available in buffer

48

Selector-based Solution

Separate mailboxes for producers consumers
|deal example for declarative guards
Producer Mailbox guard

e Bufferis not full
Consumer Mailbox guard

e Bufferis not empty

49

Selector-based Solution

1 class BufferSelector extends DeclarativeSelector {
def registerGuards() {
// disable producer msgs if buffer might overflow
guard (MBX_PRODUCER,

(theMsg) => dataBuffer.size() < thresholdSize)
// disable consumer msgs when buffer empty
guard (MBX_CONSUMER,

(theMsg) => !dataBuffer.isEmpty())

}
def doProcess(theMsg: AnyRef) {
theMsg match {
case dm: ProducerMsg =>
// store the data in the buffer
dataBuffer.add(dm)
// request producer to produce next data
dm.producer.send (ProduceDataMsg.ONLY)
case cm: ConsumerMsg =>
// send data item to consumer
cm.consumer.send(dataBuffer.poll())
tryExit ()
case em: ProdExitMsg =>
numTerminatedProducers += 1
tryExit ()
} o}

O 00 N N v bW

BN NN N = = e e e e ek e e e
W N = © O 00 9 N i A W N = O

50

()
N

SC
AK
FJ]

SZ
HA
HSI
HSD

Producer Consumer benchmark

H 8.03

6.65

H 6.88

7.19

10

| 28.51

